Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

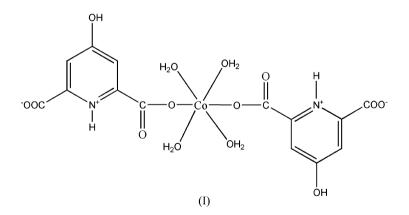
Jian-Zhong Cui, Hong Zhang, Tong Lin, Hui-Juan Kang and Hong-Ling Gao*

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: ghl@tju.edu.cn

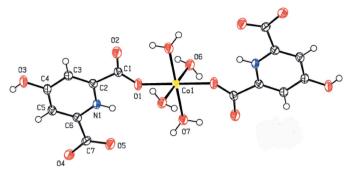
Key indicators

Single-crystal X-ray study T = 294 KMean σ (C–C) = 0.003 Å R factor = 0.025 wR factor = 0.069 Data-to-parameter ratio = 10.9

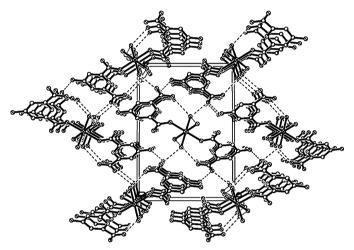

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraaqua(4-hydroxypyridine-2,6-dicarboxylato)cobalt(II)

The title compound, $[Co(C_7H_4NO_4)_2(H_2O)_4]$, consists of one cobalt cation, two 4-hydroxypyridine-2,6-dicarboxylate ligands, and four coordinated water molecules. The geometry around the cobalt(II) cation, which is located on a centre of inversion, is distorted octahedral. The four coordinated water molecules and the hydroxyl atoms from the ligand form intermolecular hydrogen bonds, resulting in a three-dimensional supramolecular network.


Comment

The formation of metal–organic framework (MOF) structures is an active area of research as these compounds have potential uses in gas storage, molecular sieves, magnetism, opto-electronic devices and so on (Davis, 2002; Leadbeater & Marco, 2002; Moulton & Zaworotko, 2001). Carboxylate ligands play an important role in the construction of novel MOFs in coordination chemistry. 4-Hydroxypyridine-2,6dicarboxylic acid (H₂chedam) is a very important carboxylate derivative. Systematic studies of 3*d*, 4*f* and 3*d*–4*f* complexes based on H₂chedam have been reported in our previous work (Gao *et al.*, 2006; Zhao *et al.*, 2006).


A new compound, $[Co(Hchedam)_2(H_2O)_4]$, (I) was isolated under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The molecular structure of (I) is composed of one cobalt(II) cation, two chedam ligands and four aqua ligands (Fig. 1). The cobalt(II) cation, which is located on a centre of inversion, is six-coordinate and the geometry around the cobalt ion is slightly distorted octahedral. The equatorial sites are occupied by four O atoms from four aqua ligands. The axial sites are occupied by two O atoms from two ligands. It was observed that the H atoms linked to O4 and O4A have moved to N1 and N1A, respectively, forming an inner salt. The four coordinated water molecules and the hydroxyl atoms

© 2006 International Union of Crystallography All rights reserved Received 30 August 2006 Accepted 3 September 2006

Figure 1

The molecular structure and atom-labelling scheme of (I). Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operator (-x, -y, -z).

Figure 2

The three-dimensional supramolecular structure of (I). Dashed lines indicate hydrogen bonds. H atoms have been omitted.

from the ligand form intermolecular hydrogen bonds, resulting in a three-dimensional supramolecular network (Fig. 2 and Table 2).

Experimental

Crystal data

$[Co(C_7H_4NO_4)_2(H_2O)_4]$	Z = 2
$M_r = 495.22$	$D_x = 1.838 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 5.3747 (8) Å	$\mu = 1.05 \text{ mm}^{-1}$
b = 10.8834 (16) Å	T = 294 (2) K
c = 15.342 (2) Å	Block, red
$\beta = 94.496 \ (2)^{\circ}$	$0.18 \times 0.10 \times 0.06~\mathrm{mm}$
V = 894.7 (2) Å ³	

Data collection

Bruker SMART CCD area-detector	
diffractometer	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\rm min} = 0.834, T_{\rm max} = 0.940$	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.069$ S = 1.101578 reflections 145 parameters H atoms treated by a mixture of independent and constrained refinement 1578 independent reflections 1434 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\text{max}} = 25.0^{\circ}$

4447 measured reflections

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.0351P)^2 \\ &+ 0.3708P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.003 \\ \Delta\rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Selected geometric parameters (Å, °).

Co1-O1	2.0653 (12)	Co1-O6	2.1266 (13)
Co1-O7	2.0764 (13)		
O1-Co1-O1 ⁱ	180	O7-Co1-O6 ⁱ	90.61 (6)
O1-Co1-O7 ⁱ	89.58 (5)	O1-Co1-O6	92.44 (5)
O1-Co1-O7	90.42 (5)	O7-Co1-O6	89.39 (6)
O7 ⁱ -Co1-O7	180	O6 ⁱ -Co1-O6	180
O1-Co1-O6 ⁱ	87.56 (5)		

Symmetry code: (i) -x, -y, -z.

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1	0.85 (2)	2.14 (2)	2.560 (2)	110.1 (17)
$N1 - H1 \cdots O5$	0.85 (2)	2.25 (2)	2.602 (2)	105.5 (17)
O3−H3···O4 ⁱⁱ	0.81	1.83	2.6049 (19)	159
O6−H6A···O5 ⁱⁱⁱ	0.83	1.85	2.6778 (19)	174
$O6-H6B\cdots O4^{iv}$	0.88	1.84	2.6878 (19)	159
$O7-H7A\cdots O2^{i}$	0.85	1.93	2.727 (2)	156
$O7 - H7B \cdots O6^{v}$	0.85	2.00	2.845 (2)	172
$C3-H3A\cdots O2^{vi}$	0.93	2.35	3.239 (2)	161
$C5-H5\cdots O5^{ii}$	0.93	2.37	3.265 (2)	162

Symmetry codes: (i) -x, -y, -z; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) x + 1, y, z; (vi) -x, -y + 1, -z.

Atom H1 (bound to N1) was found in a Fourier map and refined freely. All other H atoms were positioned geometrically and treated as riding atoms, with C-H = 0.93 Å, O-H = 0.82–0.88 Å and $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Young Teachers Foundation of Tianjin University (grant No. 5110124).

References

Bruker (1997). SMART (Version 5.10), SAINT (Version 5.10) and SHELXTL (Version 5.10). Bruker AXS Inc, Madison, Wisconsin, USA.

Davis, M. E. (2002). Nature (London), 417, 813-821.

- Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2006). Inorg. Chem. 45, 5980-5988.
- Leadbeater, N. E. & Marco, M. (2002). *Chem. Rev.* **102**, 3217–3274. Moulton, B. & Zaworotko, M. (2001). *Chem. Rev.* **101**, 1629–1658.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.
- Zhao, B., Gao, H. L., Chen, X. Y., Cheng, P., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2006). *Chem. Eur. J.* 12, 149–158.